科学家成功合成铹的第14个同位素******
超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素。铹-251具有α衰变性,可以发射出两个不同能量的α粒子。
超重元素的合成及其结构研究是当前原子核物理研究的一个重要前沿领域。铹是可供合成并进行研究的一种超镄元素,引起了人们极大的兴趣。
近日,科研人员利用美国阿贡国家实验室充气谱仪(AGFA)成功合成了超镄新核素铹-251。相关成果发表于核物理学领域期刊《物理评论C》。
此次合成铹的新同位素,运用了什么技术方法?合成得到的铹-251,具有什么基本特征?合成的铹-251对于物理、化学等学科的研究来说具有什么意义?针对上述问题,记者采访了这一工作的主要完成人之一,中国科学院近代物理研究所副研究员黄天衡。
不断进行探索,再次合成铹同位素
铹的化学符号为Lr,原子序数为103,是第11个超铀元素,也是最后一个锕系元素。“一般来说,原子序数大于铹的元素被称为超重元素。”黄天衡介绍。
质子数相同而中子数不同的同一元素的不同核素互称为同位素。同一种元素的同位素在化学元素周期表中占有同一个位置,同位素这个名词也因此而得名。
103号元素由阿伯特·吉奥索等科研人员于1961年首次合成。为纪念著名物理学家欧内斯特·劳伦斯,103号元素被命名为铹。锕系元素是元素周期表ⅢB族中原子序数为89—103的15种化学元素的统称,其中,铹元素在锕系元素中排名最后。
截至目前,科研人员们共合成了铹的14个同位素,质量数分别为251—262、264、266。目前合成的铹的14个同位素中,铹-251至铹-262是在实验中通过熔合反应直接合成的,铹-264和铹-266则是将原子序数更高的核素通过衰变生成的。
目前,铹的化学研究中最常使用的同位素是铹-256和铹-260。科研人员通过化学实验证实铹为镥的较重同系物,具有+3氧化态,可以被归类为元素周期表第七周期中的首个过渡金属元素。由于铹的电子组态与镥并不相同,铹在元素周期表中的位置可能比预期的更具有波动性。在核结构研究方面,受限于合成截面等原因,目前的研究仅集中在铹-255上。然而即使是铹-255,其结构能级的指认目前也还存有争议。
通过熔合反应,形成新的原子核
铹和其他原子序数大于100的超镄元素一样,无法通过中子捕获生成。目前铹只能在重离子加速器中通过熔合反应合成。由于原子核都具有正电荷而会相互排斥,因此,只有当两个原子核的距离足够近的时候,强核力才能克服上述排斥并发生熔合。粒子束需要通过重离子加速器进行加速。在轰击作为靶的原子核时,粒子束的速度必须足够大,以克服原子核之间的排斥力。
“仅仅靠得足够近,还不足以使两个原子核发生熔合。两个原子核更可能会在极短的时间内发生裂变,而非形成单独的原子核。”黄天衡介绍,如果这两个原子核在相互靠近的时候没有发生裂变,而是熔合形成了一个新的原子核,此时新产生的原子核就会处于非常不稳定的激发态。为了达到更稳定的状态,新产生的原子核可能会直接裂变,或放出一些带有激发能量的粒子,从而产生稳定的原子核。
在此次实验中,科研人员利用美国阿贡国家实验室ATLAS直线加速器提供的钛-50束流轰击铊-203靶,通过熔合反应合成了目标核铹-251。这个新的原子核产生后,会和其他反应产物一起被传输到充气谱仪(AGFA)中。在充气谱仪(AGFA)中,铹-251会被电磁分离出来,并注入到半导体探测器中。探测器会对这个新原子核注入的位置、能量和时间进行标记。
“如果这个原子核接下来又发生了一系列衰变,这些衰变的位置、能量和时间将再次被记录下来,直至产生了一个已知的原子核。该原子核可以由其所发生的衰变的特定特征来识别。”黄天衡说。根据这个已知的原子核以及之前所经历的系列连续衰变的过程,科研人员可以鉴别注入探测器的原始产物是什么。
超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素(具有相同中子数的核素),还是利用充气谱仪(AGFA)合成的首个新核素。目前的实验结果表明,铹-251具有α衰变性,可以发射出两个不同能量的α粒子。
拓展新的领域,推动超重核理论研究
由于形变,若干决定超重核稳定岛位置的关键轨道能级会降低到质子数Z约等于100、中子数N约等于152核区的费米面附近。对于这一核区的谱学研究可以对现有描述稳定岛的各个理论模型进行严格检验,从而进一步了解超重核稳定岛的相关性质。由于上述原因,对于这一核区的谱学研究是当下探索超重核结构性质的热点课题。
此前的理论模型均无法准确地描述这一核区铹的质子能级演化,相关的实验数据十分有限。“本次实验的初衷为把铹的结构研究进一步拓展到丰质子区,尝试开展系统性的研究。”黄天衡表示。
研究结果表明,形成超重核稳定岛的关键质子能级在铹的丰质子同位素中存在能级反转现象。此外,研究人员还通过推转壳模型下粒子数守恒方法(PNC-CSM)较好地描述了这一现象,并指出了ε_6形变在这一核区的质子能级演化中起到的重要作用。
“此次研究指出了ε_6形变在铹的丰质子核区的质子能级演化中起到的重要的作用,对现有的理论研究提出了新的挑战,将推动超重核领域相关理论研究的发展。”黄天衡说。(记者颉满斌)
访谈|因美纳全球高级副总裁李庆:中国市场是发展基因测序的“宝地”******
(第五届进博会)访谈|因美纳全球高级副总裁李庆:中国市场是发展基因测序的“宝地”
中新社上海11月7日电 题:访谈|因美纳全球高级副总裁李庆:中国市场是发展基因测序的“宝地”
中新社记者 李佳佳
“今天在进博展台上看到的因美纳新产品NovaSeq X Plus,目前全球只有四台,我们几乎在第一时间把它带到了本届进博会。”指着正在进博会舞台上“全球首展”“亚洲首秀”的展品,全球基因测序和芯片技术领先企业因美纳全球高级副总裁兼大中华区总经理李庆说。
作为紧密联系中国市场和世界企业的重要纽带,进博会的如期举办传递了中国不断对外开放、共享高质量发展新机遇的积极信号。李庆指出,因美纳是中国生命科学和基因检测产业蓬勃发展的获益者与推动者,期待通过进博会搭建的交融互通桥梁,加速创新成果与先进技术在华落地,满足更多科研发展与临床应用需求,让更多人享受到基因组学带来的变革性进步。
就在上个月,2022年诺贝尔生理学或医学奖公布,因为在“关于已灭绝人类基因组和人类进化的发现”方面的贡献,瑞典生物学家斯万特·帕博获此殊荣,而他恰好是因美纳的客户。“对于基因,大家的认知可能有所不同,但无一例外,大家都能认同的是,今年是‘基因大年’。”李庆说,“斯万特·帕博的获奖,对于很多医学领域从业者是一个大事件,这意味着大家的理解已经进入基因层面。”
近几年,“基因测序”逐渐成为一个时髦的新词,但是这项技术的普及率并不高。“可能因为很多人没有条件做,也有可能知晓度、认可度还不高,我们的上一辈甚至就连医生可能都没有这个认知。”另一个关键的问题在于成本。据美国国家人类基因组研究所(NHGRI)数据,2001年,单位基因组的测序成本高达1亿美元。
因美纳上一代高通量测序仪是2017年发布的NovaSeq6000,当时一个人类全基因组测序的成本需要600美元,5年后的现在,随着新产品的推出,同一单位测序成本降到了200美元。李庆称,成本的降低对于整个基因产业、人类健康的推动作用很大。“从科研到临床,从患者诊疗到现在的健康管理,比方说癌症早筛,测序成本只有越来越低,才能进一步拓展测序的可及性。”
为什么基因测序的普及如此重要?在李庆的理解中,基因测序是一项面向未来的事业,它在重大疾病诊断、遗传病筛查、农业、合成生物学等领域都有广阔的应用场景。大量的人群肿瘤基因诊断项目、微小残留病灶(MRD)、新型的诊断方式等,都在不断涌现。
在临床上,基因的检测需求与肿瘤领域的应用密切相关。癌症病人全部都有基因变异,而这个变异随着治疗会发生变化,所以帮助患者找出基因变异的靶点,从而匹配这方面的药物,是基因检测在肿瘤领域里最早的应用。近几年,全球有一个新的趋势,即微小残留病灶也需要应用到基因检测技术,因为这一技术能够先于影像学,重新看到又扩散或者复发的风险,从而能够尽早干预。更新的应用就是癌症早筛,即甲基化测序泛癌肿瘤。当患者体内有微小肿瘤的时候,可以很早通过基因测序将肿瘤找出来,并可以根据肿瘤的甲基化特征进行定位,进行一些必要的干预,因此这是一个很有前景的应用。
目前,中国市场正是发展基因测序的“宝地”。李庆列举了中国市场的两大优势:技术与人口。
首先,智慧芽创新研究中心发布的《医药生物系列报告之四——基因测序前沿技术洞察报告》显示,在第四代测序技术——纳米孔测序技术领域,美英中三国掌握着核心专利,正如李庆所评价的“紧跟世界潮流”。
第二个优势则在于中国庞大的人口基数。“基因测序是以大数据作为背景的,测序的人越多,积累的数据越多,未来能够挖掘的东西也就越多。”李庆解释道,“从这个角度,开展大规模人群的研究,无论是对于患者群体还是健康群体,能产生的积极影响都将非常巨大”。(完)
(文图:赵筱尘 巫邓炎)